Translation Invariant Julia Sets

نویسندگان

  • DAVID BOYD
  • Aimo Hinkkanen
چکیده

We show that if the Julia set J(f) of a rational function f is invariant under translation by one and infinity is a periodic or preperiodic point for f , then J(f) must either be a line or the Riemann sphere.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translation invariant mappings on KPC-hypergroups

In this paper, we give an extension of the Wendel's theorem on KPC-hypergroups. We also show that every translation invariant mapping is corresponding with a unique positive measure on the KPC-hypergroup.

متن کامل

Translation invariant surfaces in the 3-dimensional Heisenberg‎ ‎group

‎In this paper‎, ‎we study translation invariant surfaces in the‎ ‎3-dimensional Heisenberg group $rm Nil_3$‎. ‎In particular‎, ‎we‎ ‎completely classify translation invariant surfaces in $rm Nil_3$‎ ‎whose position vector $x$ satisfies the equation $Delta x = Ax$‎, ‎where $Delta$ is the Laplacian operator of the surface and $A$‎ ‎is a $3 times 3$-real matrix‎.

متن کامل

On a Metric on Translation Invariant Spaces

In this paper we de ne a metric on the collection of all translation invarinat spaces on a locally compact abelian group and we study some properties of the metric space.

متن کامل

Family of Invariant Cantor Sets as orbits of Differential Equations II: Julia Sets

The Julia set of the quadratic map fμ(z) = μz(1 − z) for μ not belonging to the Mandelbrot set is hyperbolic, thus varies continuously. It follows that a continuous curve in the exterior of the Mandelbrot set induces a continuous family of Julia sets. The focus of this article is to show that this family can be obtained explicitly by solving the initial value problem of a system of infinitely c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999